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Abstract. We consider the situation where a two-level atom is placed in the vicinity of the center of a
spherical cavity with a large numerical aperture. The vacuum field at the center of the cavity is actually
equivalent to the one obtained in a microcavity, and both the dissipative and the reactive parts of the atom’s
spontaneous emission are significantly modified. Using an explicit calculation of the spatial dependence of
the radiative relaxation rate and of the associated level shift, we show that for a weakly excitating light
field, the atom can be attracted to the center of the cavity by vacuum-induced light shifts.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 32.80.Pj Optical cooling of
atoms; trapping – 42.50.Pq Cavity quantum electrodynamics; micromasers – 42.50.Lc Quantum fluctua-
tions, quantum noise, and quantum jumps

1 Introduction

Many theoretical and experimental work has been devoted
during recent years to the so-called “cavity QED” regime,
where strong coupling is achieved between a few atoms
and a field mode contained inside a microwave or optical
cavity. In particular, it has been demonstrated that the
spontaneous emission rate of an atom inside the cavity is
different from its value in free space [1–13]. This effect can
be discussed from several different approaches, and here
it will be basically attributed to a change of the spec-
tral density of the modes of the vacuum electromagnetic
field, which is due to the cavity resonating structure [13].
This approach is particularly convenient when the cav-
ity does not have one single high-finesse mode, but rather
many nearly degenerate modes, as it is the case in con-
focal or spherical cavities. More precisely, we will show
that a “wide aperture” concentric resonator using spheri-
cal mirrors with a large numerical aperture, can in princi-
ple change significantly the spontaneous emission rate of
an atom sitting close to the cavity center, even with mod-
erate finesse. Similar result were already demonstrated,
using either a spherical cavity [7,11,13] or “hour-glass”
modes in a confocal cavity [12].

In such experiments, the atom has to sit within the ac-
tive region volume, which is usually of very small size (of
order (10λ)3 to (100λ)3). In references [11,12], a possible
solution was implemented by using a narrow atomic beam,
and by reducing the cavity finesse in order to have an ex-
tended area in which a spherical wave is “self-imaged” on
itself. However, getting large effects will put more severe
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constraints both on the quality of the cavity and on the
localisation of the atoms. A different way to implement
the proposed scheme in a spherical cavity, that we would
like to discuss in more detail here, is to use light-induced
forces in order to attract the atom to the cavity center. A
possible implementation could be to couple a light beam
inside the cavity, and then to use the dipole force to hold
the atoms in the right position, i.e., close to the cavity
center. The effect of strong atom-cavity coupling on the
dipole force has been studied theoretically [14,21], and
very interesting effects can be expected: since the atomic
relaxation will be modified by the cavity, the balance be-
tween the trapping and heating effects of the dipole trap
will be changed with respect to free space, which could
result in an improvement of the trap itself.

A good understanding of these effects requires first
to know the full space dependence of the cavity-induced
damping and level shifts. In this paper, we will look at
the situation where the atom lies close to the center of a
spherical cavity with a large numerical aperture. We will
show that large changes both in the atom damping rate
and in its energy levels can be expected, even with a mod-
erate cavity finesse, provided that the atom sits (relatively,
but not extremely) close to the cavity center [13]. More-
over, we will show that for a weak excitating field, the
atom can be trapped by vacuum-induced light shifts [15,
16], which create a force whose spatial dependence is re-
lated to the shape of the mode spectral density. In the
following, we will assume that the cavity damping rate κ
is much larger than the free-space atom damping rate Γvac.
In that case, the cavity still acts as a continuum with re-
spect to the atomic relaxation. This will allow us to treat
simply the atom-field coupling using frequency-dependent
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coupling coefficients. For simplicity, we will also assume a
weak excitation of the atom. This assumption is however
not crucial, and possible extensions will be discussed at
the end of the paper.

2 Light-induced forces in the cavity QED
regime

Let us consider a neutral, slowly moving two-level atom
in the dipole approximation. The Hamiltonian describing
the atom-light coupling is:

H = Hf + Ha − D · E(r) (1)

where D is the atom dipole moment and E is the electric
field. The free field and atom Hamiltonians are respec-
tively Hf =

∑
k �ωk(nk + 1/2) and Ha = p2/(2m) +

�ωoS
(z). Here, r and p are the atom’s position and

momentum, m is its mass, and the dipole operator can
be written D = d(eiωLtS(+) + e−iωLtS(−)), where S(+)

and S(−) are the usual two-level rising and lowering oper-
ators in the frame rotating at the angular frequency ωL of
an externally applied laser (we have S(z) = (S(+)S(−) −
S(−)S(+))/2). The electric field operator is expanded as
usual on a basis of orthogonal modes, but we do not spec-
ify that these modes should be plane waves. One has there-
fore:

E(r, t) = i
∑

k

ek(r) ak(t) e−iωkt + h.c. (2)

where k is a mode label which include polarization,
and ek(r) is the contribution of mode k to the field at
point r close to the cavity center. It will be convenient to
refer optical frequencies to a reference ωL, which can be
the frequency of an externally applied laser as said above,
and to define:

A(r, t) = i
∑

k

ek(r) ak(t) e−i(ωk−ωL)t (3)

so that:

E(r, t) = A(r, t)e−iωLt + A†(r, t)eiωLt. (4)

Moving to a frame rotating at the frequency ωL and using
the rotating wave approximation, the interaction part of
the Hamiltonian can be written:

Hint = −S(+)d · A− d ·A†S(−). (5)

From the expression of the Hamiltonian one can simply
get the force acting on the atom [19]:

F(r, t) =
dp
dt

= −∇H = ∇(S(+)(t)d · A(r, t)) + h.c. (6)

In this expression, the only space-dependant part is ek(r),
so the force can also be written:

F(r, t) = iS(+)(t)
∑

k

∇[d · ek(r)]ak(t)e−i(ωk−ωL)t + h.c.

(7)

From the Hamiltonian, one gets the Heisenberg equations
for the field operators ak [17], which can be integrated
formally, yielding (d · ek is taken real):

ak(t) = ak(t0) +
d · ek

�

∫ t−t0

0

dτS(−)(t− τ)ei(ωk−ωL)(t−τ).

(8)
Using this result in the definition of the fields operators,
one sees that the field splits in two parts E = Eo + Es,
where Eo and Es are the well-known “vacuum field” and
“source field” terms, which do not commute [17]. By
choosing the normal ordering when separating the two
non-commuting terms, the first one (depending on Ao

or Eo) gives the usual expression of the light-induced
force [19]. The second term is zero in the absence of a
cavity, because the gradient of the source field is zero at
the dipole place. This is no longer true inside a cavity, and
still assuming normal ordering, one has:

Fs =
∑

k

i∇ [d · ek(r)] d · ek(r)
�

×
∫ t−t0

0

dτS(+)(t)S(−)(t − τ)e−i(ωk−ωL)τ + h.c.

= ∇
[
∑

k

i(d · ek(r))2

2�

×
∫ t−t0

0

dτS(+)(t)S(−)(t − τ)e−i(ωk−ωL)τ

]

+ h.c.

(9)

In order to get the physical meaning of this integral, let
us write the Heisenberg equation for S(−) and use the
expression of ak in order to get:

dS(−)

dt
= iδLS(−) − 2iS(z)d ·Ao

�
+ 2

∑

k

(d · ek)2

�2

×
∫ t−t0

0

dτS(z)(t)S(−)(t − τ)e−i(ωk−ωL)τ , (10)

where δL = ωL − ωo. The integral appearing here has
the same structure as the one appearing in equation (9)
under the gradient, and corresponds to the well-known
relaxation and light shift terms in the evolution of the
dipole components. It can be calculated as usual using
a Markov approximation [17], which is possible here be-
cause as said above we assumed that the cavity features
are wide compared to the free-space relaxation rate of the
atom. In the weak excitation limit, which is assumed here,
one can approximate the evolution of the correlation func-
tions by their free evolution during the short memory time
of the reservoir. Note that an extension should be made
to the strong excitation regime by considering relaxation
in a dressed state basis [20]. Making the approximation
S(−)(t − τ) = S(−)(t) e−i(ωL−ω0)τ during the correlation
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time [17], one can define the quantities:

∑

k

(d · ek(r))2

�2

∫ t−t0

0

dτ e−i(ωk−ωo)τ =

∑

k

(d · ek(r))2

�2

(

πδ(ωk − ωo) + iP
(

1
ωk − ωo

))

= Γ (r)/2 + i∆(r) (11)

where one has therefore:

Γ (r) =
2π

�2

∑

k

(d · ek(r))2δ(ωk − ωo) (12)

∆(r) =
∑

k

(d · ek(r))2

�2
P
(

1
ωk − ωo

)

. (13)

Using these definitions and S(z)S(−) = −S(−)/2, equa-
tion (10) becomes as expected

dS(−)

dt
=
(

iδL − i∆(r) − Γ (r)
2

)

S(−) − 2iS(z)d · Ao

�

(14)
so that the atomic frequency ω0 becomes ω0 + ∆(r). We
note that the free-space value of ∆(r) is a diverging quan-
tity, which is usually assumed to be absorbed in the defini-
tion of the atomic levels; therefore, one considers here only
the (finite) change of ∆(r) with respect to this free-space
value, that will be denoted ∆′(r):

∆′(r) = ∆cav(r) − ∆vac(r). (15)

In the expression of the extra term in the force, one can
use either ∆′(r) or ∆cav(r), since the gradient of ∆vac(r)
is zero anyway, and one obtains:

Fs = �/2
(
S(+)S(−)∇(−∆′(r) + iΓ (r)/2)

+∇(−∆′(r) − iΓ (r)/2)S(+)S(−)
)

= −∇(�∆′(r))S22 (16)

where S22 = S(+)S(−) = S(z) + 1/2 is the excited state
population. Therefore the gradient of the cavity-induced
light shift creates a force, which can attract the atom to-
ward the cavity center for an appropriate choice of the
atom-cavity detuning. Physically, it makes sense that F is
proportional both to the gradient of the level shift, and
to the excited level population. In order to characterize
more precisely the behaviour of this force, one needs now
the explicit space dependence of ∆′(r). The same calcula-
tion will also give the space-dependent damping Γ (r)/2,
which will be useful for calculating the steady state and
evolution of the atomic operators.

3 Cavity-induced relaxation rates and light
shifts

For definiteness, we will consider the case of a spherical
cavity of radius R and of reflectivity and transmittivity

coefficients ρ and τ , with ρ2 + τ2 = 1, and τ2 = T . We
will assume that kR � 1 (typically kR = 105), and a
moderate cavity finesse (in the range 10−100). A crucial
parameter is the solid angle subtended by the cavity, that
will be denoted ∆Ωcav. For instance, a cavity half-aperture
angle of 45 degrees gives ∆Ωcav/4π = 0.3, and therefore
∆Ωvac/4π = 0.7 as the fraction of space still occupied by
vacuum modes. All parameters quoted above seem accessi-
ble from an experimental point of view, and we will show
now that they allow one to get quite significant cavity-
induced effects.

In order to calculate the explicit space and frequency
dependence of the relaxation rate and level shift, we have
followed two parallel approaches, which are described in
detail in another publication [13]. The first one is to solve
explicitly the field equations in a spherical geometry, tak-
ing into account the considerable simplifications which
appear since we are interested in the field at distances
smaller than ∼ 100λ− off the origin. In geometric optics
this involves light-rays with an impact parameter smaller
than 100λ−, and therefore, in the multipole expansion of
the field, it will be sufficient to consider harmonics up
to order l ≤ 100. Actually, up to 300 harmonics have be
used in order to check consistency. Another very impor-
tant point is that the continuity equations of the fields on
the mirrors must be expressed at a distance R � 1 cm.
With λ = 780 nm, this corresponds to kR � 80 000, which
is quite large, and allows one to use asymptotic forms of
the solutions on the mirrors. Under these assumptions, it
can be shown that the expression of ∆′(r) and Γ (r)/2 can
be given an explicit operatorial form in the space of mode
functions, and then evaluated numerically in a spherical
harmonics basis [13].

Besides this “exact” calculation, we have also looked
for an approximate solution, inspired by ray-optics consid-
erations, and eventually checked by comparison with the
complete numerical calculation. Using this cross-checking
method, we obtain finally that the effect of the cavity can
be described to a very good approximation by the follow-
ing formulas:

Γ (r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
(

T

|1 − ρe2iφ |2 cos2(kΩ̂·r) +
T

|1 + ρe2iφ |2 sin2(kΩ̂·r)
)

(17)

∆′ (r)
Γvac

=
∫

4π

dΩ̂
4π

3
2



1 −
(

d · Ω̂
d

)2




×
(

ρ sin (2φ)
|1 − ρe2iφ |2 cos2(kΩ̂ · r) − ρ sin (2φ)

|1 + ρe2iφ |2 sin2(kΩ̂ · r)
)

(18)

where the notation Ω̂ describes a direction in space,
while φ is a cavity detuning parameter that will be
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detailed below. These expressions have a straightforward
interpretation, because they appear basically as integrals
over the direction of light rays: in the integral over the
directions, ρ is the mirror reflectivity for rays subtended
by the cavity, and is zero for rays outside the cavity solid
angle. The different factors appearing in the integrals can
be interpreted in the following way:

• the first factor under the integral corresponds to po-
larisation effects, taking into account the transverse
character of the field;

• the second (resonance) factor is of the usual Fabry-
Perot form, where φ is the cavity phase shift which
includes first a term φ0 = ω0R/c. The complete cal-
culation shows that, in order to obtain a correct re-
sult outside the cavity center, φ should include also
a contribution from spherical aberrations, that is:
φ = φ0 + k(r2 − (Ω̂ · r)2)/2R. This second term cor-
responds to the extra phase shift experienced by rays
going through point r while propagating along the Ω̂-
direction. The resonance factor has different expres-
sions for the damping and the lamb shift terms, which
correspond respectively to the active and reactive parts
of the coupling. This is clearly apparent from the inte-
grals of equations (12) and (13); which involve either a
delta function or a principal part. In the first case, the
integration is trivial, and yields the resonance term
of equation (17), while in the second case the result
is obtained by contour integration [13], and gives the
(dispersive) second term of equation (18);

• the third term under the integrals is the stationary
wave pattern corresponding either to odd modes (with
an anti-node in the center and a cos2

(
kΩ̂ · r) space

dependence) or to even modes (with a node in the
center and a sin2

(
kΩ̂ · r) space dependence);

• finally, the integration over the mirrors is conveniently
performed in spherical coordinates, by taking the z-
axis along the cavity axis, and varying the azimuthal
angle θ from 0 to θmirror = θm. Improved accuracy
(better than 1%) is obtained if one takes into account
the fact that the rays which would be reflected near the
edge of the mirror are actually lost due to diffraction
and fail to do as many round-trips as the other ones.
We have shown [13] that this effect can be taken into
account very simply by decreasing θm to θeff = θm−δθ,
with δθ = 1/

√
kRT for symmetrical mirrors.

The first results which can be obtained from the previous
formulas are obviously the shift and damping at the cavity
center, as a function of the atom-cavity detuning. For a
dipole orientation parallel to the cavity axis, we obtain
straightforwardly:

Γpar (0)
Γvac

=
∆Ωvac

4π

(

1 +
sin2 θm

2

)

+
∆Ωcav

4π

(

1 − cos θm (1 + cos θm)
2

)
T

|1 − ρe2iφ0 |2 (19)

∆′
par (0)
Γvac

=
∆Ωcav

4π

(

1 − cos θm (1 + cos θm)
2

)

× ρ sin (2φ0)
|1 − ρe2iφ0 |2 (20)

while for a dipole orientation perpendicular to the cavity
axis, we have:

Γperp (0)
Γvac

=
∆Ωvac

4π

(

1 − sin2 θm

4

)

+
∆Ωcav

4π

(

1 +
cos θm (1 + cos θm)

4

)
T

|1 − ρe2iφ0 |2 (21)

∆′
perp (0)
Γvac

=
∆Ωcav

4π

(

1 +
cos θm (1 + cos θm)

4

)

× ρ sin (2φ0)
|1 − ρe2iφ0 |2 . (22)

We note that these expressions yield for a randomly ori-
ented dipole:

Γav(0)
Γvac

=
∆Ωvac

4π
+

∆Ωcav

4π

T

|1 − ρe2iφ0 |2 ,

∆′
av(0)
Γvac

=
∆Ωcav

4π

ρ sin(2φ0)
|1 − ρe2iφ0 |2 (23)

which have a straightforward interpretation in terms of
resonant enhancement of the rays subtended by the cav-
ity. We note that these results are the same as those given
in reference [7], up to factor two resulting from the fact
that this reference was considering spatially averaged val-
ues rather than the peak value at the cavity center (see
below for the space dependence). These functions are plot-
ted in Figure 1 for Ωcav/4π = 0.3 and ρ = 0.98. It can be
seen that very significant effects occur for these quite rea-
sonable parameters, yielding more than 30-fold increase in
the damping rate at the cavity center.

We can then look at the results as a function of space
for a given frequency, which are essential for the present
paper. Two atom-cavity detunings are specially worth
looking at: the resonant frequency at the cavity center,
which yields maximum change in the damping rate but
no cavity shift, and frequencies detuned by plus or mi-
nus half a cavity linewidth, which yield maximum cavity
shifts. As an example, the results for the damping rates
are plotted in Figure 2. The general values of the damping
and level shifts for arbitrary values of the reflectivities ρ1,
ρ2 of the two mirrors are given in [13], Appendix C.

4 Discussion

From the results of the previous section one can deduce
some features of the “vacuum-induced” force given by
equation (16). For simplicity, we consider an atom at
point r with zero velocity. The simplest configuration in
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Fig. 1. Normalized damping Γ (0)/Γvac (left) and level shift ∆′(0)/Γvac (right) at the cavity center, as a function of the atom-
cavity detuning (ω0 − ωcav) normalized to the cavity linewidth. The amplitude reflection coefficient of the mirrors is taken to
be ρ = 0.98, and the numerical aperture of the cavity is 0.7. The upper curves correspond to a dipole oriented perpendicular to
the cavity axis, and the lower curves to a dipole oriented along the cavity axis.

Fig. 2. Spatial variation of the atomic damping Γ (r)/Γvac on the cavity axis, obtained from the analytical formula given in the
text. The atom-cavity detuning is taken equal to zero at the cavity center (see Fig. 1), and the horizontal axis unit is 1/k. The
amplitude reflection coefficient of the mirrors is ρ = 0.98, and the numerical aperture of the cavity is 0.7. The upper left curve
corresponds to a dipole oriented perpendicular to the cavity axis, the upper right curve to a dipole oriented along the cavity
axis, and the lower curve is a zoom close to the cavity center.

which this force should be dominant is a weak stationary
wave resonant on the atom, but detuned from the cavity.
In that case, both the usual scattering and dipole force are
zero, while the cavity-induced light shift is maximum for a
detuning of about half a cavity width. It can be seen easily
that the force is attractive when the cavity is detuned to
the blue side of the atomic resonance (ω0 < ωcav). This
can be understood physically by realizing that the cavity
“repels” the excited state level, and that this level has to
go down in order to get an attractive potential. The cor-
responding potential wells are a few �Γ (see Eq. (16)),
which is quite significant if cold atoms are used.

Besides the effect described here in the weak excitation
regime, another possibility is to couple a laser beam in-
side the cavity, with a red atom-laser detuning, in order to
create a dipole trap attracting the atom towards the cav-
ity center. A very interesting effect can then be expected:
since the atomic relaxation will be modified by the cavity,
the balance between the trapping and heating effects of
the dipole trap will be changed with respect to free space,
enabling new regimes where the dipole force can be both
attractive and damped. In that case, the calculation above
should be extended to moving atoms (non-zero velocity)
in order to calculate friction forces, as well as to calculate
the diffusion coefficient. For very cold atoms, the quan-

tum aspect of motion should also be included; this could
be done in principle since we have obtained the explicit
space dependence of the trapping potential.

5 Conclusion

As a conclusion, we have shown that macroscopic cavi-
ties with large numerical apertures are interesting candi-
dates for cavity QED experiments in the optical domain.
The possibility to use light-induced force to hold the atom
close to the cavity center is quite attractive, and it offers
the possibility to study a well defined quantum system,
including its external degrees of freedom. The expressions
that we have obtained are general, and by using the results
of reference [13] they can be applied to any kind of low-
finesse cavity, including the case of a “half-cavity” with
only one mirror imaging the dipole onto itself [22–24].
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